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Stability and Topology of Scale-Free Networks under Attack and Defense Strategies
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We study tolerance and topology of random scale-free networks under attack and defense strategies that
depend on the degree k of the nodes. This situation occurs, for example, when the robustness of a node
depends on its degree or in an intentional attack with insufficient knowledge of the network. We
determine, for all strategies, the critical fraction pc of nodes that must be removed for disintegrating
the network. We find that, for an intentional attack, little knowledge of the well-connected sites is
sufficient to strongly reduce pc. At criticality, the topology of the network depends on the removal
strategy, implying that different strategies may lead to different kinds of percolation transitions.
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The observation that many real networks, such as the
Internet, the WWW, social and biological networks, etc.,
obey a power-law distribution in their nodes connectivity
has inspired a new area of research [1–8]. Such a network
is constructed by nodes connected with links, where the
probability P�k� that a node has k links is

P�k� � k��; (1)

where � is usually found to be between 2< �< 3.
The scale-free character of these networks, represented

by having no characteristic number of nodes per link, gives
rise to many different and usually unexpected results in
many properties, as compared to lattice models or even to
small-world networks [1]. One important feature studied is
the robustness of such a network under a random node
removal [9]. In general, the integrity of a network is
destroyed after a critical percentage pc of the system nodes
has been removed. For scale-free networks it has been
shown that pc � 1; i.e., in order to destroy the network
practically all the nodes have to be removed [10].

In this Letter, we consider scale-free networks where the
robustness of a node depends on its connectivity. This
means that the probability of damaging a node either by
some kind of failure or by an external attack depends on the
degree k of the node. Examples are computer networks and
social networks. In a computer network such as the
Internet, usually the hubs that serve many computers are
built in a more robust way, so that their probability of
failure is smaller than for the others. In a social network,
members of a group that have more links to others have a
lower probability of leaving the group. It is, however, also
possible that nodes with more links are less robust. For
example, traffic on a network induces high loads on highly
connected nodes [11], which in turn makes them more
vulnerable to failures. In some cases breakdowns are due
to cascades of failures caused by the dynamics of damage
spreading [12]. In computer networks many breakdowns
are due to congestion building (see [13]).
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The above examples represent internal properties of a
network, where the vulnerability of each node depends on
its degree. In addition, the probability of removing a node
can depend on its degree also due to external attack strat-
egy. For example, the most efficient attack is an intentional
attack where the highest degree nodes are being removed
with probability one. In this case, only a small fraction p of
removed nodes is sufficient to destroy the network. This
strategy, however, requires full knowledge of the network
topology in order to identify the highest connected nodes.
In many realistic cases, this information is not available,
and only partial knowledge exists. Accordingly, in an in-
tentional attack the high-degree nodes can be removed only
with a certain probability that will depend on k. In some
networks, such as terror or Mafia networks those that are
higher in the hierarchy have more links and are less known,
and therefore the probability to remove them is smaller
than those with less links. In contrast, in normal social
networks the situation is opposite: The better linked mem-
bers are more visible and therefore have a higher proba-
bility to be attacked. Finally, our study also applies to
immunization strategies, where the high-degree nodes are
not always known in advance; see also Dezsö and Barabási
[14].

In all these examples, a value W�ki� is assigned to each
node, which represents the probability that a node i with ki
links becomes inactive either by failure or under some
attack. Specifically, we focus on the family of functions,

W�ki� �
k
iPN
i�1 k



i
; �1<
<1: (2)

The parameter 
 can be the sum of two parameters, 
 �

0 � 
00, which incorporates both intrinsic network vul-
nerability (
0) and external knowledge of the system (
00).
It is possible that although some highly connected nodes
are intrinsically vulnerable (
0 > 0), an internal defense
strategy with 
00 < 0 will give the net result 
< 0 [15]. In
this case, nodes with lower k are more vulnerable, while for
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FIG. 1. The ratio of nonspanning configurations vs the fraction
of removed nodes p. Lines are simulation data, from networks of
N � 106 nodes, while the circles are the theoretical critical
points. (a) Results from 100 different realizations of networks
with � � 2:5. Left to right: 
 � 4, 1, 0.5, 0.25, and 0. (b) Results
from 300 realizations of networks with � � 3:5. Left to right:

 � 4, 1, 0.5, 0, �0:5, and �1.
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> 0, nodes with larger k are more vulnerable. The cases

 � 0 and 
 ! 1 represent the known random removal
[9,10] and the targeted intentional attack [9,10],
respectively.

The choice of 
 can be related to the probability w that
in each attack, one of the n highest connected nodes in a
network of N nodes becomes inactive by failure or attack.
By definition

w �

Rkmax
kn

P�k�W�k�dkR
kmax
m P�k�W�k�dk

; (3)

where m denotes the minimum number and kmax �

N1=���1� the maximum number of links a node can have.
kn is the minimum number of links of a node that belongs
to the n highest connected nodes. It is easy to verify that for
N 
 n 
 1, w is related to 
 and � by

w �
1� n���1�
�=���1�m
�1��

1� N���1�
�=���1�m
�1��
: (4)

Depending on the value of 
, for a fixed value of �, we can
distinguish three different regimes.

(i) 
> �� 1: Here, w � 1, and an ‘‘attacker’’ is ca-
pable of destroying all the highest nodes in the network.
Even though 
 is finite here, this case is fully equivalent to
the targeted intentional attack 
 ! 1.

(ii) 
 � �� 1: For this particular value of 
, w depends
logarithmically on n and N, w � lnn= lnN.

(iii) 
< �� 1: Here, w decreases with n=N by a power
law, w � �n=N�1�
=���1�. A special case is 
 � 0, where
effectively nodes are picked randomly and thus w � n=N.
In this case, it is difficult to destroy the network, and the
percolation threshold pc can even be pc � 1 for well-
connected networks (� < 3) [9,10]. For 0<
 � �� 1,
the effective removal is better than random; w still ap-
proaches zero for N approaching infinity, but slower than in
the random case. As is shown later, this is enough for the
percolation threshold to be significantly smaller than 1.
Finally, for negative values of 
, the fraction w of the
highest connected nodes that will be damaged decreases
much faster than in the random case. This feature will have
no effect on the percolation threshold for 2< � � 3,
where pc � 1 already in the random case. But for � > 3,
pc increases with increasing negative values of 
, as we
show below.

From the above discussion it is clear that the regime 
>
�� 1 is in the same universality class as the intentional
attack, and 
 � 0 is identical to the random attack. It is not
clear if there are more universality classes and if not, what
is the border line between them. To study this question, we
have considered both numerical simulations and analytical
considerations. First, we determine the percolation thresh-
olds as a function of the network parameters �, N, and m,
and of the ‘‘attack‘‘ parameter 
. Then we study the
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universality classes by analyzing the topology of the net-
work at these thresholds.

In the numerical treatment and the analysis we use
random mixing for the network construction, where no
correlations exist between the connectivity of neighboring
sites. We first construct the network for a given �. We fix
the number of nodes N, as well as m and assign the degree
k (number of links) for each node by drawing a random
number from a power-law distribution P�k� � k��. We
then randomly select pairs of links between nodes that
have not yet reached their preassigned connectivity and
have not already been directly linked to each other. We
repeat this selection until the entire network has been
created.

To find the percolation thresholds pc, we choose suc-
cessively nodes with probability W�k� [see Eq. (2)] and
remove them. When a node is removed all its links are cut.
After each removal, we calculate hk2i and hki. If � �
hk2i=hki � 2, a spanning cluster exists in the network.
We repeat this procedure for a large number of configura-
tions (typically 100–300). For each concentration p of
removed nodes we determine the probability F1 that a
spanning cluster does not exist. We obtain pc from the
condition F1 � 1=2, as is shown in Fig. 1 for � � 2:5 and
3.5 and several 
 values between 4 and �1. The width of
the dispersion in F1 gives an upper bound for the error bars
for pc.

In the analytical treatment, we assume that sites are
chosen for deletion according to their initial connectivity.
A site is chosen with probability k
=Nhk
i. After d dele-
tion attempts, the probability that a site of connectivity k
has not been deleted is

��k� �
�
1�

k


Nhk
i

�
d
� e�dk
=Nhk
i: (5)

The condition for the existence of a spanning cluster after
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the attack is as follows: a site is reached through a link with
probability kP�k�=hki and is still functional with probabil-
ity ��k�. If the average number of outgoing links (k� 1)
per site is larger than 1, a spanning cluster will exist. This
consideration is formulated by

Xkmax

k�m

P�k�k�k� 1�

hki
e�qck
 � 1; (6)

where q � d=Nhk
i, and qc is the value of q at criticality.
To find the fraction of removed sites, one numerically
solves Eq. (6) to calculate qc and substitutes this value
for calculating the critical threshold of removed sites:

pc �
X

P�k���k� �
Xkmax

k�m

P�k� exp��qck
�: (7)

Equation (7) describes the percolation threshold pc for a
given network of N nodes with exponent �, as a function of
the attack parameter 
.

The lines in Fig. 2 represent the solutions of Eqs. (6) and
(7) and are in excellent agreement with the simulations (in
symbols). Remarkably, for � < 3, pc becomes smaller than
1 already for very small positive 
 values and decays
rapidly with increasing 
. Accordingly, by a very small
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FIG. 2. (a) Values of pc vs � for different 
 values: (bottom to
top) 
 � 4, 1, 0.5, 0, �0:5, and �1. The symbols represent
simulation data (N � 106 nodes) from 100–300 different net-
work realizations. The solid lines are the theoretical predictions
for finite-size networks, while the dashed lines correspond to
infinite-size networks. Lower cutoff: m � 1. (b) Values of pc vs

 for infinite-size networks and different � values. Lower cutoff
m � 1. (c) The same as (a), with a lower cutoff m � 2. (d) The
same as (b), with a lower cutoff m � 2.
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preference probability to remove highly connected nodes,
which arises, for example, in an intentional attack with
very little knowledge of the network structure, this network
can be destroyed by removing a comparatively small frac-
tion of nodes. Above 
 � �� 1, pc saturates, which
means that the knowledge available to the attacker in this
case is sufficient to destroy the network most efficiently.
From Figs. 2(a) and 2(c) one might conclude that negative
values of 
 might lead to pc � 1 also for � values above 3.
We tested this question numerically and found that for all
values of � values between 3 and 4 and negative 
, the
percolation threshold pc is below 1. For large negative
values of 
 and � > 3, the critical threshold can be ap-
proximated by pc � 1� ��� 1��2���3

��2�m
2������1�=���3�,

which is below 1 for all � > 3 and m � 2.
To study the effect of the different attack strategies on

the topology of the network just before disruption, we
analyzed the topology of the network at the percolation
transition for different values of � and 
. We characterize
the topology by the way the average shortest topological
distance hli between two nodes scales with the cluster size
Nc. We expect that Nc scales with hli as Nc � hlid‘ , where
d‘ is the topological (‘‘chemical’’) dimension. Using a
mean-field-type approximation [16], it has been suggested
that for random removal,
d‘ �
�� 2

�� 3
; 3< �< 4; (8)
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FIG. 3. Average shortest distance hli between any two nodes of
the giant cluster at criticality as a function of the cluster size Nc.
The results correspond to networks of initially N � 104, 105, and
106 nodes. One thousand different configurations have been used
for each N, except for N � 106 (100 configurations). The data
have been logarithmically binned, and the results have been
vertically shifted for presentation clarity. The values of 
 and
� are shown in the plot. The lines represent the theoretical slopes
of (top to bottom) 1=2, 1=3:5, 1=3, and 1=2:33, respectively.
Inset: semilogarithmic plot for the case of � � 2:5 and 
 � 0.
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while for the intentional attack

d‘ � 2; � > 2: (9)

The power-law dependence hli � N1=d‘
c is very different

from the logarithmic dependence hli � logN found in
scale-free networks for p well above pc and � > 3.
Accordingly, due to the attacks, the network becomes
very inefficient, since the distances between the nodes
increase drastically, from a logarithmic to a power-law
dependence on the total number of nodes. Equations (8)
and (9) suggest that random removal and intentional attack
are in different universality classes. This implies that the
critical properties of the percolation transition depend on
the way the transition is being approached, which is quite
unusual in critical phenomena. To test these predictions
and to see if there are further universality classes, we
studied numerically how, at criticality, hli scales with Nc,
for different networks and different attack parameters 
.

Figure 3 shows simulation results for hli as a function of
Nc for several values of � and 
. For 
> 0, the data scale
quite nicely and yield a slope very close to 1=2 (corre-
sponding to dl � 2) for all � values, being identical to the
theoretical prediction, Eq. (9), for the 
 � 1. This shows
that all attacks with 
> 0 fall into the same universality
class. The figure also verifies the prediction of Eq. (8) for
random removal (
 � 0) when � > 3. It shows, in addi-
tion, that attacks with 
< 0 result almost in the same
network structure as for 
 � 0 and yield the same topo-
logical dimension. Thus, for a given network with � > 3
the same network can undergo transitions of two universal-
ity classes: (i) 
> 0 (universality class of the targeted
intentional attack) and (ii) 
 � 0 (universality class of
random removal).

For 2<�< 3 and 
 � 0, the situation is less conclu-
sive. Here, it is difficult to distinguish between a logarith-
mic or a power-law dependence, as can be seen from the
inset of Fig. 3. Since for the pure network, hli � log logN
[16], also a simple logarithmic dependence hli � logN will
lead to a strong increase of the mean distance between the
nodes at criticality, as suggested by the inset.

In summary, we have studied the network tolerance
under different attack strategies. We find that little knowl-
edge on the highly connected nodes in an intentional attack
reduces the threshold drastically compared with the ran-
dom case. For example, when in a scale-free network with
� � 2:5 the 1% highest connected nodes are known with
probability w � 0:2 (corresponding to 
 � 1), the thresh-
old reduces from pc � 1 for the random case (w � 0) to
pc � 0:25. When all hubs are known (w � 1), pc is close
to 0.07. This shows that, for example, the Internet (see also
[17]) can be damaged efficiently when only a small frac-
tion of hubs is known to the attacker. Moreover, this result
is also relevant for immunization of populations: Even if
the virus spreaders are known (and immuned) with small
probability, the spreading threshold can be reduced signifi-
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cantly. We also showed that even if the attack does not yet
disintegrate the network, there is nevertheless a major
damage on the network, since the distances between the
nodes increase significantly and any transport process on
the net may become inefficient. Our results show that the
topology of the network close to criticality, characterizing
the universality class of the phase transition, depends on
the strategy of node removal.

This work was supported by a European research NEST
Project No. DYSONET 012911, by the DAAD, and by the
Israel Science Foundation.
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